In mathematics, in the area of complex analysis, the general difference polynomials are a polynomial sequence, a certain subclass of the Sheffer polynomials, which include the Newton polynomials, Selberg's polynomials, and the Stirling interpolation polynomials as special cases.
Contents |
The general difference polynomial sequence is given by
where is the binomial coefficient. For , the generated polynomials are the Newton polynomials
The case of generates Selberg's polynomials, and the case of generates Stirling's interpolation polynomials.
Given an analytic function , define the moving difference of f as
where is the forward difference operator. Then, provided that f obeys certain summability conditions, then it may be represented in terms of these polynomials as
The conditions for summability (that is, convergence) for this sequence is a fairly complex topic; in general, one may say that a necessary condition is that the analytic function be of less than exponential type. Summability conditions are discussed in detail in Boas & Buck.
The generating function for the general difference polynomials is given by
This generating function can be brought into the form of the generalized Appell representation
by setting , , and .